机器学习算法的鲁棒性是什么意思?是指预测性好还是稳定?
关于鲁棒性有定义吗?
1个回答
机器学习算法鲁棒性并没有严格的量化的定义。鲁棒性,robustness,顾名思义,就是健壮的意思。
一个人健壮,就是小毛小病,不碍事;不健壮,就是病来如山倒。一个人健壮,就是晴天好,雨天好,冬天好,夏天好,不会突然莫名其妙地不舒服了。
机器学习模型的健壮也是类似的意思。主要是两个方面。
1. 小毛小病可以看作是数据中的错误点、或者误差。难免的,训练集中常常有些数据是有错位的,类似的,预测样本中也有可能有一些错误。一个具有鲁棒性的机器学习模型能够不被这些训练集中的错误数据影响,依然能绕过浮云看本质。
2. 常常训练样本和预测样本的分布不大相同,一个具有鲁棒性的模型就是即使当测试集的数据分布与训练集数据分布比较不同的时候,模型也能给出较好的预测结果。鲁棒性模型不光是“夏天”好,“冬天”也要好。
相关主题
推荐开放数据库
5回答
在线算法(online algorithm)是什么意思?
2回答
hyperparameter与parameter的区别?
3回答
机器学习如何快速入门?
1回答
Bagging是什么意思?
3回答
baseline模型和benchmark模型的差别?
1回答
建立一个预测模型的流程是什么
1回答
我们谢绝在回答前讲“生动”的故事。
我们谢绝“这么简单,你自己想”、“书上有的,你认真看”这类的回答;如果你认为对方的提问方式或者内容不妥,你可以直接忽略该问题,不用进行任何作答,甚至可以对该问题投反对票。
我们谢绝答非所问。
我们谢绝自己不会、硬要回答。
我们感激每一个用户在编写答案时的努力与付出!